Python package #1
24
src/graph.rs
24
src/graph.rs
|
@ -1,3 +1,4 @@
|
|||
use rand::Rng;
|
||||
use std::sync::{Arc, RwLock};
|
||||
pub struct Node {
|
||||
pub x: f32,
|
||||
|
@ -10,3 +11,26 @@ pub struct Edge {
|
|||
|
||||
pub type EdgeMatrix = Arc<RwLock<Vec<Vec<Edge>>>>;
|
||||
pub type NodeVector = Arc<Vec<RwLock<Node>>>;
|
||||
|
||||
pub fn new_edge_matrix(size: usize) -> EdgeMatrix {
|
||||
let mut matrix = Vec::with_capacity(size);
|
||||
for _ in 0..size {
|
||||
let mut row = Vec::with_capacity(size);
|
||||
for _ in 0..size {
|
||||
row.push(Edge { weight: 0.0 });
|
||||
}
|
||||
matrix.push(row);
|
||||
}
|
||||
Arc::new(RwLock::new(matrix))
|
||||
}
|
||||
|
||||
pub fn new_node_vector(size: usize) -> NodeVector {
|
||||
let mut nodes = Vec::with_capacity(size);
|
||||
for _ in 0..size {
|
||||
nodes.push(RwLock::new(Node {
|
||||
x: rand::thread_rng().gen_range(-0.5..0.5),
|
||||
y: rand::thread_rng().gen_range(-0.5..0.5),
|
||||
}));
|
||||
}
|
||||
Arc::new(nodes)
|
||||
}
|
||||
|
|
|
@ -1,94 +0,0 @@
|
|||
|
||||
use rand::Rng;
|
||||
use std::sync::{Arc, RwLock};
|
||||
use std::thread;
|
||||
use crate::graph::{EdgeMatrix, NodeVector, Node, Edge};
|
||||
use crate::my_model;
|
||||
use crate::utils;
|
||||
|
||||
|
||||
fn nodes_list(size: usize) -> NodeVector {
|
||||
let mut nodes = Vec::new();
|
||||
for _ in 0..size {
|
||||
let node = RwLock::new(Node {
|
||||
x: rand::thread_rng().gen_range(-0.5..0.5),
|
||||
y: rand::thread_rng().gen_range(-0.5..0.5),
|
||||
});
|
||||
nodes.push(node);
|
||||
}
|
||||
Arc::new(nodes)
|
||||
}
|
||||
|
||||
fn connection_matrix(size: usize) -> EdgeMatrix {
|
||||
let mut matrix = Vec::with_capacity(size);
|
||||
for _ in 0..size {
|
||||
let mut row = Vec::with_capacity(size);
|
||||
for _ in 0..size {
|
||||
row.push(Edge { weight: 0.0 });
|
||||
}
|
||||
matrix.push(row);
|
||||
}
|
||||
Arc::new(RwLock::new(matrix))
|
||||
}
|
||||
|
||||
fn edge_matrix_from_edge_list(number_of_nodes: usize, edge_list: Vec<(u32, u32)>) -> EdgeMatrix {
|
||||
let matrix_ptr = connection_matrix(number_of_nodes as usize);
|
||||
{
|
||||
let mut matrix = matrix_ptr.write().unwrap();
|
||||
for (node_a, node_b) in edge_list {
|
||||
matrix[node_a as usize][node_b as usize].weight = 1.0;
|
||||
matrix[node_b as usize][node_a as usize].weight = 1.0;
|
||||
}
|
||||
}
|
||||
matrix_ptr
|
||||
}
|
||||
|
||||
pub fn layout(number_of_nodes: usize, edge_list: Vec<(u32, u32)>) -> Vec<(f32, f32)> {
|
||||
const ITER: usize = 5000;
|
||||
const THREADS: usize = 8;
|
||||
|
||||
// let edges = connection_matrix(size);
|
||||
let edges = edge_matrix_from_edge_list(number_of_nodes, edge_list);
|
||||
let mut nodes = nodes_list(number_of_nodes);
|
||||
let mut nodes_next = nodes_list(number_of_nodes);
|
||||
|
||||
// let model = Arc::new(RwLock::new(spring_model::InitialModel::new(edges, number_of_nodes)));
|
||||
let model = Arc::new(RwLock::new(my_model::MyModel::new(edges, number_of_nodes, ITER)));
|
||||
|
||||
let chunks = utils::gen_chunks(number_of_nodes, THREADS);
|
||||
for epoch in 0..ITER {
|
||||
model.write().unwrap().prepare(&nodes);
|
||||
let mut handles = vec![];
|
||||
for i in 0..THREADS {
|
||||
let nodes = nodes.clone();
|
||||
let nodes_next = nodes_next.clone();
|
||||
let chunk = chunks[i].clone();
|
||||
let model = model.clone();
|
||||
let handle = thread::spawn(move || {
|
||||
for n in chunk {
|
||||
let update = model.read().unwrap().step(&nodes,n);
|
||||
let mut result = nodes_next[n].write().unwrap();
|
||||
result.x = update.x;
|
||||
result.y = update.y;
|
||||
}
|
||||
});
|
||||
handles.push(handle);
|
||||
}
|
||||
|
||||
for handle in handles {
|
||||
handle.join().unwrap();
|
||||
}
|
||||
|
||||
// swap nodes and nodes_next
|
||||
let tmp = nodes.clone();
|
||||
nodes = nodes_next.clone();
|
||||
nodes_next = tmp.clone();
|
||||
}
|
||||
|
||||
let mut result = vec![];
|
||||
for node in nodes.iter() {
|
||||
let node = node.read().unwrap();
|
||||
result.push((node.x, node.y));
|
||||
}
|
||||
result
|
||||
}
|
10
src/lib.rs
10
src/lib.rs
|
@ -1,16 +1,16 @@
|
|||
mod layout;
|
||||
mod runner;
|
||||
mod utils;
|
||||
mod spring_model;
|
||||
mod my_model;
|
||||
mod graph;
|
||||
|
||||
use pyo3::prelude::*;
|
||||
|
||||
/// Formats the sum of two numbers as string.
|
||||
#[pyfunction]
|
||||
fn layout_from_edge_list(number_of_nodes: usize, edges: Vec<(u32, u32)>) -> PyResult<Vec<(f32, f32)>> {
|
||||
#[pyfunction(number_of_nodes, edges, "*", iter=500, threads=0)]
|
||||
fn layout_from_edge_list(number_of_nodes: usize, edges: Vec<(u32, u32)>, iter: usize, threads: usize) -> PyResult<Vec<(f32, f32)>> {
|
||||
let r = runner::Runner::new(iter, threads);
|
||||
Ok(
|
||||
layout::layout(number_of_nodes, edges)
|
||||
r.layout(number_of_nodes, edges)
|
||||
)
|
||||
}
|
||||
|
||||
|
|
|
@ -1,97 +0,0 @@
|
|||
use crate::graph::{EdgeMatrix, NodeVector, Node};
|
||||
|
||||
pub struct MyModel {
|
||||
edges: EdgeMatrix,
|
||||
ranks: Vec<f32>,
|
||||
size: usize,
|
||||
opt_dist: f32,
|
||||
c: f32,
|
||||
dc: f32,
|
||||
}
|
||||
|
||||
impl MyModel {
|
||||
|
||||
pub fn new(edges: EdgeMatrix, size: usize, iterations: usize) -> MyModel {
|
||||
let opt_dist = 1.0;
|
||||
let c = 0.1;
|
||||
let mut ranks = vec![0.0; size];
|
||||
{
|
||||
let edges = edges.read().unwrap();
|
||||
for i in 0..size {
|
||||
ranks[i] = edges[i].iter().map(|e| e.weight).sum();
|
||||
}
|
||||
}
|
||||
|
||||
MyModel{
|
||||
edges,
|
||||
ranks,
|
||||
size,
|
||||
opt_dist,
|
||||
c: c,
|
||||
dc: c / ((iterations + 1) as f32)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn prepare(& mut self, _nodes: &NodeVector) {
|
||||
self.c -= self.dc;
|
||||
}
|
||||
|
||||
pub fn step(&self, nodes: &NodeVector, i_node: usize) -> Node {
|
||||
|
||||
let node = nodes[i_node].read().unwrap();
|
||||
let edges = self.edges.read().unwrap();
|
||||
|
||||
let node_x = node.x;
|
||||
let node_y = node.y;
|
||||
|
||||
let mut sum_x = 0.0;
|
||||
let mut sum_y = 0.0;
|
||||
|
||||
for o in 0..self.size {
|
||||
if o == i_node {
|
||||
continue;
|
||||
}
|
||||
let o_x: f32;
|
||||
let o_y: f32;
|
||||
{
|
||||
let other = nodes[o].read().unwrap();
|
||||
o_x = other.x;
|
||||
o_y = other.y;
|
||||
}
|
||||
|
||||
let d_x = o_x - node_x;
|
||||
let d_y = o_y - node_y;
|
||||
let dist = (d_x * d_x + d_y * d_y).sqrt();
|
||||
let unit_x = d_x / dist;
|
||||
let unit_y = d_y / dist;
|
||||
|
||||
let edge = edges[i_node][o].weight;
|
||||
|
||||
if edge == 0.0 {
|
||||
let f_rep = dist.powi(2).recip().min(self.opt_dist);
|
||||
let f_rep_x = f_rep * unit_x;
|
||||
let f_rep_y = f_rep * unit_y;
|
||||
|
||||
sum_x -= f_rep_x;
|
||||
sum_y -= f_rep_y;
|
||||
} else {
|
||||
let f_spring = 0.5 * (dist - self.opt_dist);
|
||||
let f_spring_x = f_spring * unit_x;
|
||||
let f_spring_y = f_spring * unit_y;
|
||||
sum_x += f_spring_x;
|
||||
sum_y += f_spring_y;
|
||||
}
|
||||
}
|
||||
|
||||
// limit the movement
|
||||
// TODO: find a good upper bound
|
||||
let sum_l = (sum_x * sum_x + sum_y * sum_y).sqrt().max(1e-6).recip() * self.c;
|
||||
let sum_x = sum_x * sum_l;
|
||||
let sum_y = sum_y * sum_l;
|
||||
|
||||
Node {
|
||||
x: node_x + sum_x,
|
||||
y: node_y + sum_y,
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,80 @@
|
|||
|
||||
use std::sync::{Arc, RwLock};
|
||||
use std::thread;
|
||||
use crate::graph::{EdgeMatrix, new_node_vector, new_edge_matrix};
|
||||
use crate::spring_model;
|
||||
use crate::utils;
|
||||
|
||||
pub struct Runner {
|
||||
iterations: usize,
|
||||
threads: usize,
|
||||
}
|
||||
|
||||
impl Runner {
|
||||
pub fn new(iterations: usize, threads: usize) -> Self {
|
||||
Self {
|
||||
iterations,
|
||||
threads,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn layout(self: &Self, number_of_nodes: usize, edge_list: Vec<(u32, u32)>) -> Vec<(f32, f32)> {
|
||||
// let edges = connection_matrix(size);
|
||||
let edges = edge_matrix_from_edge_list(number_of_nodes, edge_list);
|
||||
let mut nodes = new_node_vector(number_of_nodes);
|
||||
let mut nodes_next = new_node_vector(number_of_nodes);
|
||||
|
||||
// let model = Arc::new(RwLock::new(spring_model::InitialModel::new(edges, number_of_nodes)));
|
||||
let model = Arc::new(RwLock::new(spring_model::MyModel::new(edges, number_of_nodes, self.iterations)));
|
||||
|
||||
let chunks = utils::gen_chunks(number_of_nodes, self.threads);
|
||||
for _epoch in 0..self.iterations {
|
||||
model.write().unwrap().prepare(&nodes);
|
||||
let mut handles = vec![];
|
||||
for i in 0..self.threads {
|
||||
let nodes = nodes.clone();
|
||||
let nodes_next = nodes_next.clone();
|
||||
let chunk = chunks[i].clone();
|
||||
let model = model.clone();
|
||||
let handle = thread::spawn(move || {
|
||||
for n in chunk {
|
||||
let update = model.read().unwrap().step(&nodes,n);
|
||||
let mut result = nodes_next[n].write().unwrap();
|
||||
result.x = update.x;
|
||||
result.y = update.y;
|
||||
}
|
||||
});
|
||||
handles.push(handle);
|
||||
}
|
||||
|
||||
for handle in handles {
|
||||
handle.join().unwrap();
|
||||
}
|
||||
|
||||
// swap nodes and nodes_next
|
||||
let tmp = nodes.clone();
|
||||
nodes = nodes_next.clone();
|
||||
nodes_next = tmp.clone();
|
||||
}
|
||||
|
||||
let mut result = vec![];
|
||||
for node in nodes.iter() {
|
||||
let node = node.read().unwrap();
|
||||
result.push((node.x, node.y));
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
fn edge_matrix_from_edge_list(number_of_nodes: usize, edge_list: Vec<(u32, u32)>) -> EdgeMatrix {
|
||||
let matrix_ptr = new_edge_matrix(number_of_nodes as usize);
|
||||
{
|
||||
let mut matrix = matrix_ptr.write().unwrap();
|
||||
for (node_a, node_b) in edge_list {
|
||||
matrix[node_a as usize][node_b as usize].weight = 1.0;
|
||||
matrix[node_b as usize][node_a as usize].weight = 1.0;
|
||||
}
|
||||
}
|
||||
matrix_ptr
|
||||
}
|
||||
|
|
@ -1,29 +1,30 @@
|
|||
use crate::graph::{EdgeMatrix, NodeVector, Node};
|
||||
|
||||
|
||||
const C_REP: f32 = 0.1;
|
||||
const C_SPRING: f32 = 0.1;
|
||||
|
||||
pub struct InitialModel {
|
||||
pub struct MyModel {
|
||||
edges: EdgeMatrix,
|
||||
size: usize,
|
||||
opt_dist: f32,
|
||||
t: f32,
|
||||
|
||||
c: f32,
|
||||
dc: f32,
|
||||
}
|
||||
|
||||
impl InitialModel {
|
||||
impl MyModel {
|
||||
|
||||
pub fn new(edges: EdgeMatrix, size: usize) -> InitialModel {
|
||||
let opt_dist = 1.0 / (size as f32).sqrt();
|
||||
InitialModel{ edges, size, opt_dist, t: 0.1 }
|
||||
pub fn new(edges: EdgeMatrix, size: usize, iterations: usize) -> MyModel {
|
||||
let opt_dist = 1.0;
|
||||
let c = 0.1;
|
||||
|
||||
MyModel{
|
||||
edges,
|
||||
size,
|
||||
opt_dist,
|
||||
c: c,
|
||||
dc: c / ((iterations + 1) as f32)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn prepare(& mut self, nodes: &NodeVector) {
|
||||
self.t = 0.1 * f32::max(
|
||||
nodes.iter().map(|n| n.read().unwrap().x.abs()).reduce(|a, b| a.max(b)).unwrap(),
|
||||
nodes.iter().map(|n| n.read().unwrap().y.abs()).reduce(|a, b| a.max(b)).unwrap()
|
||||
);
|
||||
pub fn prepare(& mut self, _nodes: &NodeVector) {
|
||||
self.c -= self.dc;
|
||||
}
|
||||
|
||||
pub fn step(&self, nodes: &NodeVector, i_node: usize) -> Node {
|
||||
|
@ -31,8 +32,12 @@ impl InitialModel {
|
|||
let node = nodes[i_node].read().unwrap();
|
||||
let edges = self.edges.read().unwrap();
|
||||
|
||||
let mut node_x = node.x;
|
||||
let mut node_y = node.y;
|
||||
let node_x = node.x;
|
||||
let node_y = node.y;
|
||||
|
||||
let mut sum_x = 0.0;
|
||||
let mut sum_y = 0.0;
|
||||
|
||||
for o in 0..self.size {
|
||||
if o == i_node {
|
||||
continue;
|
||||
|
@ -47,30 +52,37 @@ impl InitialModel {
|
|||
|
||||
let d_x = o_x - node_x;
|
||||
let d_y = o_y - node_y;
|
||||
let dist = (d_x * d_x + d_y * d_y).sqrt().max(0.01);
|
||||
let dist = (d_x * d_x + d_y * d_y).sqrt();
|
||||
let unit_x = d_x / dist;
|
||||
let unit_y = d_y / dist;
|
||||
|
||||
let edge = edges[i_node][o].weight;
|
||||
|
||||
if edge == 0.0 {
|
||||
let f_rep = (C_REP / (dist).powi(2)).min(self.t);
|
||||
let f_rep = dist.powi(2).recip().min(self.opt_dist);
|
||||
let f_rep_x = f_rep * unit_x;
|
||||
let f_rep_y = f_rep * unit_y;
|
||||
|
||||
node_x -= f_rep_x;
|
||||
node_y -= f_rep_y;
|
||||
sum_x -= f_rep_x;
|
||||
sum_y -= f_rep_y;
|
||||
} else {
|
||||
let f_spring = (C_SPRING * (dist / self.opt_dist).log(2.0)).min(self.t);
|
||||
let f_spring = 0.5 * (dist - self.opt_dist);
|
||||
let f_spring_x = f_spring * unit_x;
|
||||
let f_spring_y = f_spring * unit_y;
|
||||
node_x += f_spring_x;
|
||||
node_y += f_spring_y;
|
||||
sum_x += f_spring_x;
|
||||
sum_y += f_spring_y;
|
||||
}
|
||||
}
|
||||
|
||||
// limit the movement
|
||||
// TODO: find a good upper bound
|
||||
let sum_l = (sum_x * sum_x + sum_y * sum_y).sqrt().max(1e-6).recip() * self.c;
|
||||
let sum_x = sum_x * sum_l;
|
||||
let sum_y = sum_y * sum_l;
|
||||
|
||||
Node {
|
||||
x: node_x,
|
||||
y: node_y,
|
||||
x: node_x + sum_x,
|
||||
y: node_y + sum_y,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,6 +16,7 @@ pub fn gen_chunks(n: usize, chunks: usize) -> Vec<Range<usize>> {
|
|||
}
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
|
|
Loading…
Reference in New Issue