use crate::graph::{EdgeMatrix, Node, NodeVector}; pub struct MyModel { edges: EdgeMatrix, size: usize, opt_dist: f32, c: f32, dc: f32, } impl MyModel { pub fn new(edges: EdgeMatrix, size: usize, iterations: usize) -> MyModel { let opt_dist = 1.0; let c = 0.1; MyModel { edges, size, opt_dist, c: c, dc: c / ((iterations + 1) as f32), } } pub fn prepare(&mut self, _nodes: &NodeVector) { self.c -= self.dc; } pub fn step(&self, nodes: &NodeVector, i_node: usize) -> Node { let node = nodes[i_node].read().unwrap(); let edges = self.edges.read().unwrap(); let node_x = node.x; let node_y = node.y; let mut sum_x = 0.0; let mut sum_y = 0.0; for o in 0..self.size { if o == i_node { continue; } let o_x: f32; let o_y: f32; { let other = nodes[o].read().unwrap(); o_x = other.x; o_y = other.y; } let d_x = o_x - node_x; let d_y = o_y - node_y; let dist = (d_x * d_x + d_y * d_y).sqrt(); let unit_x = d_x / dist; let unit_y = d_y / dist; let edge = edges[i_node][o].weight; if edge == 0.0 { let f_rep = dist.powi(2).recip().min(self.opt_dist); let f_rep_x = f_rep * unit_x; let f_rep_y = f_rep * unit_y; sum_x -= f_rep_x; sum_y -= f_rep_y; } else { let f_spring = 0.5 * (dist - self.opt_dist); let f_spring_x = f_spring * unit_x; let f_spring_y = f_spring * unit_y; sum_x += f_spring_x; sum_y += f_spring_y; } } // limit the movement // TODO: find a good upper bound let sum_l = (sum_x * sum_x + sum_y * sum_y).sqrt().max(1e-6).recip() * self.c; let sum_x = sum_x * sum_l; let sum_y = sum_y * sum_l; Node { x: node_x + sum_x, y: node_y + sum_y, } } }